Course: Mathematics I

« Back
Course title Mathematics I
Course code KMF/IMA1E
Organizational form of instruction Lecture + Lesson
Level of course Bachelor
Year of study not specified
Semester Winter
Number of ECTS credits 6
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Fačevicová Kamila, Mgr. Ph.D.
  • Jičínský Milan, Ing.
  • Juryca Karel, Ing.
  • Vozáb Jaroslav, Mgr.
  • Rulićová Iva, RNDr.
  • Rak Josef, RNDr. Ph.D.
  • Marek Jaroslav, Mgr. Ph.D.
  • Pozdílková Alena, Mgr. Ph.D.
Course content
This is the basic course on differential and integral calculus of real functions of one variable. Introduction to mathematical logic and elementary set theory. Sequences of real numbers: limit of a sequence and its basic properties, Euler number e, basic sequence properties - monotone and bounded sequences. Functions of one real variable: definition and basic properties (bounded, monotone, odd, even, periodic, compose, inverse), elementary functions, decomposition of rational functions. Limit and continuity: definitions and basic theorems, evaluation of limits, functions continuous on closed intervals. Weierstrass theorem. Differential Calulus: definition of derivative, motivation from geometry and physics, basic properties, derivatives of elementary functions, differential of function and its applications, higher order derivatives, mean value theorem, l'Hospital rule, Taylor polynomial, Taylor theorem. Course of function: first and second derivatives meaning, local and global extremum, inflection points, vertical and inclined asymptotes, finding a graph of functions. Problems of finding global extrema, derivative of parametrized functions. Primitive functions: definition, basic properties and formulas for elementary functions, per-partes and substitution methods, integration of rational functions, special substitutions. Riemann integral: definition and basic properties, existence, evaluation methods, improper Riemann integral, convergence. Applications of Riemann integral to geometry and physics. Number and function series: definition and basic properties, convergence criteria, power series, Taylor series.

Learning activities and teaching methods
Monologic (reading, lecture, briefing), Projection, Skills training
  • unspecified - 78 hours per semester
Learning outcomes
Students will gain knowledge in elementary mathematical terms, linear algebra, analytical geometry, differential and integral calculus function of one's variable. The module should increase logical and mathematical skills of the students. Students will be able to understand mathematical conceptions, definitions and operations from this area. They also will gain mathematical skills in such a level that they will be able to apply these skills to following subjects in a particular field of their future study. (electrical and communication technology, microprocessor technology etc.)
Students active use mathematical equipment, are able of logical thinking and are able active to use mathematicel skills in subjects informatics and electrical technology.
Prerequisites
Standard mathematical knowns and skills of the mathematics of the middle schools, which make possible to continue the differential and integral onevariable calculus.

Assessment methods and criteria
Written examination

Credit requirements: success in written test (Learn). The course is completed by written exam, at least 50% of success is required. An oral form of the exam is optional, upon a student's request.
Recommended literature
  • Ayres, F., Mendelson, E. Schaum's Outline of Calculus.
  • Binmore, K.G. Mathematical Analysis: A Straightforward Approach.
  • Cabrnochová, R. ,Prachař, O. Průvodce předmětem Matematika I (druhá část) - Úlohy z diferenciálního a integrálního počtu. Pardubice, 2004. ISBN 80-7194-694-X.
  • Coufal, J., Klůfa, J. Matematika I pro VŠE. Praha, 1994.
  • Kolda, S., Černá, M. Matematika - Úvod do lineární algebry a analytické geometrie. Pardubice, 1995.
  • Machačová, L.-Prachař, O.-Kolda, S. Cvičebnice z matematiky I/1. Pardubice, 1997.
  • Machačová, Ludmila. Matematika : základy diferenciálního a integrálního počtu. Pardubice: Univerzita Pardubice, 2003. ISBN 80-7194-577-3.
  • Prachař, O., Cabrnochová, R. Průvodce předmětem Matematika I (třetí část) - Úlohy z lineární algebry, analytické geometrie a z nekonečných řad. Pardubice, 2000. ISBN 80-7194-694-X.
  • Spiegel, M., Lipschutz, S. Schaum's Outline of Vector Analysis.


Study plans that include the course
Faculty Study plan (Version) Branch of study Category Recommended year of study Recommended semester
Faculty of Electrical Engineering and Informatics Communication and Microprocessor Technology (2015) Electrical engineering, telecommunication and IT 1 Winter
Faculty of Electrical Engineering and Informatics Process Control (2016) Special and interdisciplinary fields 1 Winter
Faculty of Electrical Engineering and Informatics Communication and Microprocessor Technology (2014) Electrical engineering, telecommunication and IT 1 Winter
Faculty of Electrical Engineering and Informatics Process Control (2013) Special and interdisciplinary fields 1 Winter
Faculty of Electrical Engineering and Informatics Process Control (2014) Special and interdisciplinary fields 1 Winter
Faculty of Electrical Engineering and Informatics Process Control (2015) Special and interdisciplinary fields 1 Winter
Faculty of Electrical Engineering and Informatics Communication and Microprocessor Technology (2016) Electrical engineering, telecommunication and IT 1 Winter
Faculty of Electrical Engineering and Informatics Communication and Microprocessor Technology (2013) Electrical engineering, telecommunication and IT 1 Winter